8 research outputs found

    Planning to ‘Hear the Farmer’s Voice’: an Agent-Based Modelling Approach to Agricultural Land Use Planning

    Get PDF
    Agricultural land use is influenced not only by multiple aspects of biophysical and socio-economic processes, but also the cumulative impacts of individual farmer decisions. Farmers’ activities and decisions at farm scale shape land use and water utilisation at regional scale, yet land use planning processes do not take into account farmers’ knowledge and decision-making processes as they respond to, and in turn shape, change. Farmers’ voices are missing in the planning system. In this paper, we address the complexity of agricultural land use planning and examine the possibility of agricultural land use planning from the bottom-up via simulation to integrate environmental, economic and human factors that influence land use change. We present an innovative approach to model the interactions between government policy, market signals, and farmers’ land use decisions, and how the accumulated effects of these individual decisions change agricultural land use patterns at regional scale, using spatial and temporal agent-based modeling. A multi-stage mixed method spatial agent-based modeling (ABM) approach, aligned with the Geodesign framework, can incorporate local knowledge and decision-making into models of regional land use change. To illustrate the new approach, we examine the impact of milk market price on changes in land use in Tasmania, Australia. This approach brings together local knowledge with scientific, planning, and policy knowledge to generate dynamic scenarios for informed agricultural land-use planning decisions

    Investigating the Effects of Homocysteine as an Agonist on Invertebrate Glutamatergic Synapses

    Get PDF
    Hyperhomocysteinemia (HHcy) in mammals can produce neurological deficits, such as memory loss. The cause of the neurological issues is assumed to be due to homocysteine (HCY) binding to glutamatergic receptors in the central nervous system (CNS). High levels of HCY in the CNS are also associated with Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s disease. Thus, understanding the detailed mechanisms of HCY in model preparations could be useful in developing potential treatments to neurodegenerative diseases with overlapping symptoms to HHcy. The aim of this study is to investigate the efficacy of HCY as an agonist at glutamatergic synapses in invertebrates. The glutamatergic synapses of the larval Drosophila melanogaster (D. melanogaster) and Procambarus clarkii (P. clarkii) neuromuscular junctions (NMJs) were utilized to examine the effects of applying HCY. Measurements of evoked synaptic transmission in both preparations revealed that 100 mM of HCY did not have any consistent effect. The expectation was that the acute action of HCY would have activated the glutamate receptors and then desensitized them so evoked transmission would be blocked. The pharmacological receptor profile of these NMJ receptors are of a quisqualate subtype and not a kainate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate receptor (NMDA) subtype. Consequently, HCY may not have any action on quisqualate glutamate receptor subtypes. The findings of this experiments could provide clinical implications regarding relevant pharmacological treatments in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease

    Effects of Clove Oil (Eugenol) on Proprioceptive Neurons, Heart Rate, and Behavior in Model Crustaceans

    Get PDF
    Clove oil contains eugenol as an active ingredient and is used as a topical anesthetic in mammals to remedy pain and to anesthetize fish and other seafood for short periods; however, the exact mechanism of action of eugenol is not fully understood. We examined use of eugenol as a reversible anesthetic in crustaceans by examining its effect on sensory and motor neurons in the Red Swamp crayfish (Procambarus clarkii), Blue crab (Callinectes sapidus) and Whiteleg shrimp (Litopenaeus vannamei) with electrophysiological recordings. The neurogenic heart rate in the three species was also monitored along with behaviors and responsiveness to sensory stimuli. The activity of the primary proprioceptive neurons was reduced at 200 ppm and ceased at 400 ppm for both crayfish (i.e., muscle receptor organ) and crab (i.e., leg PD organ) preparations when exposed to saline containing eugenol. Flushing out eugenol resulted in recovery in the majority of the preparations within five to ten minutes. Administering eugenol to crayfish and crabs both systemically and through environmental exposure resulted in the animals becoming lethargic. Direct injection into the hemolymph was quicker to decrease reflexes and sensory perception, but heart rate was still maintained. Eugenol at a circulating level of 400 ppm decreased electromyogram activity in the claw muscle of crabs. Surprisingly, this study found no change in heart rate despite administering eugenol into the hemolymph to reach 400 ppm in crabs or crayfish but heart rate in shrimp preparations decreased. Our results demonstrate the feasibility of eugenol as a short-term anesthetic for crustaceans to decrease stress during handling or transportation, considering its effectiveness at decreasing sensory input and the quick recovery of upon removal of eugenol. A neurophysiology course took this project on as an authentic course-based undergraduate research experience (ACURE)

    Von der Ethnogenese zur Identitätsforschung

    Get PDF
    Hyperhomocysteinemia (HHcy) in mammals can produce neurological deficits, such as memory loss. The cause of the neurological issues is assumed to be due to homocysteine (HCY) binding to glutamatergic receptors in the central nervous system (CNS). High levels of HCY in the CNS are also associated with Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s disease. Thus, understanding the detailed mechanisms of HCY in model preparations could be useful in developing potential treatments to neurodegenerative diseases with overlapping symptoms to HHcy. The aim of this study is to investigate the efficacy of HCY as an agonist at glutamatergic synapses in invertebrates. The glutamatergic synapses of the larval Drosophila melanogaster (D. melanogaster) and Procambarus clarkii (P. clarkii) neuromuscular junctions (NMJs) were utilized to examine the effects of applying HCY. Measurements of evoked synaptic transmission in both preparations revealed that 100 mM of HCY did not have any consistent effect. The expectation was that the acute action of HCY would have activated the glutamate receptors and then desensitized them so evoked transmission would be blocked. The pharmacological receptor profile of these NMJ receptors are of a quisqualate subtype and not a kainate, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate receptor (NMDA) subtype. Consequently, HCY may not have any action on quisqualate glutamate receptor subtypes. The findings of this experiments could provide clinical implications regarding relevant pharmacological treatments in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease

    Chemical carcinogens a review and analysis of the literature of selected chemicals and the establishment of the Gene-Tox carcinogen data base

    No full text
    corecore